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Abstract
We show that all bounded trajectories in the two-dimensional classical system
with the potential V (r, ϕ) = ω2r2 + αk2

r2 cos2 kϕ
+ βk2

r2 sin2 kϕ
are closed for all integer

and rational values of k. The period is T = π
2ω

and does not depend on k. This
agrees with our earlier conjecture suggesting that the quantum version of this
system is superintegrable.

PACS numbers: 02.30.Lk, 03.65.Fd, 45.20.Jj, 45.50.Jf

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A recent article was devoted to an infinite family of quantum systems on a plane described by
the Hamiltonian

Hk = −∂2
r − 1

r
∂r − 1

r2
∂2
ϕ + ω2r2 +

αk2

r2 cos2 kϕ
+

βk2

r2 sin2 kϕ
, (1)

where k is an arbitrary real number and (r, ϕ) are polar coordinates [1]. These systems were
shown to be exactly solvable and integrable for all values of k. Integrability is assured by the
existence of a second-order integral of motion

Xk = L2
3 +

αk2

cos2 kϕ
+

βk2

sin2 kϕ
, L3 = −i∂ϕ, (2)

where L3 is the two-dimensional angular momentum.
The existence of the integral Xk implies the separation of variables in polar coordinates in

the Schrodinger equation in quantum mechanics and also in the Hamilton–Jacobi equation in
classical mechanics.
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Superintegrability in a two-dimensional system means that one further integral of motion
exists. Let us call it Yk.

It was conjectured in our previous article [1] that the system (1) is superintegrable for all
integer values of k and that the additional integral of motion is of order 2k. This conjecture
was proven for k = 1, 2, 3 and 4. If α = 0 or β = 0, it was proven for k = 1 to 6 and 8. For
k = 1, 2 and 3, the system (1) reduces to known superintegrable systems. For k = 1, this is
one of the four systems found in [2, 3], for k = 2 it was found in [4] and for k = 3 in [5]. The
three-body rational Calogero model [6] is a special case of (1) for k = 3.

In all cases (k = 1, 2, 3 and 4) the quantum Hamiltonian and the other quantum integrals
of motion lie in the enveloping algebra of an underlying hidden Lie algebra [7] and this is
presumably true for all integer values of k [1].

The purpose of this paper is to analyze the corresponding classical system with
Hamiltonian

Hk = p2
r +

p2
ϕ

r2
+ ω2r2 +

αk2

r2 cos2 kϕ
+

βk2

r2 sin2 kϕ
. (3)

We show that all bounded trajectories for this system are closed and that the motion is periodic
for all integer and rational values of k.

We recall that in general, in an n-dimensional space, maximal superintegrability means
that the classical Hamiltonian allows 2n − 1 functionally independent integrals of motion
(including the Hamiltonian) that are well-defined functions on the phase space. In classical
mechanics maximal superintegrability implies that all bounded trajectories are closed and
the motion is periodic [8]. The corresponding statement in quantum mechanics is that the
existence of a non-Abelian algebra of integrals of motion implies that the energy levels of the
system are degenerate. In the two-dimensional case it means that the energy depends on one
quantum number and the wavefunction on two. This is indeed the case for Hamiltonian (1)
for all rational values of k and is part of the justification of our conjecture [1].

In section 2 we integrate the Hamilton–Jacobi equation for the arbitrary values of k in
polar coordinates, restricting to the case of bounded trajectories. In section 3 we obtain an
explicit expression for the bounded trajectories in terms of Chebyshev polynomials and show
that these trajectories are all closed for integer and rational values of k. The period in time is
T = π

2ω
. For integer k with k � 2, up to k − 1 singular points can occur on the trajectories

in which the tangent vector is not defined. The special case k = 1 is discussed in detail in
section 4. This is the only case in which the Hamilton–Jacobi equation separates in a second
coordinate system, namely in Cartesian coordinates. Section 5 is devoted to examples of
trajectories illustrating all features presented in the earlier sections.

2. Integration of the Hamilton–Jacobi equation

2.1. The basic equations

The Hamilton–Jacobi equation for the considered system in polar coordinates has the form

Hk =
(

∂S

∂r

)2

+
1

r2

(
∂S

∂ϕ

)2

+ ω2r2 +
1

r2

(
αk2

cos2 kϕ
+

βk2

sin2 kϕ

)
= E. (4)

We set the integral of motion (2) equal to a constant A. Since coordinates in (4) separate we
look for a solution in which the classical action has the form

S(r, ϕ, t) = S1(r) + S2(ϕ) − Et (5)

and obtain

2
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r2

(
∂S1

∂r

)2

+ ω2r4 − Er2 = −A (6)

Xk =
(

∂S2

∂ϕ

)2

+
αk2

cos2 kϕ
+

βk2

sin2 kϕ
= A. (7)

Since we are interested in the trajectories, we do not need to solve for S1 and S2, though that
is obviously possible. Instead we follow the usual procedure [9] and calculate the derivatives
of S with respect to E and A. We have

S1 =
∫ √−A + Er2 − ω2r4

r
dr (8)

S2 =
∫ √

A cos2 kϕ sin2 kϕ − αk2 sin2 kϕ − βk2 cos2 kϕ

cos kϕ sin kϕ
dϕ, (9)

and hence

∂S

∂E
= ∂S1

∂E
− t = δ1 (10)

∂S

∂A
= ∂S1

∂A
+

∂S2

∂A
= δ2, (11)

where δ1 and δ2 are constants.

2.2. Integration of the radial part

From (8) and (10) we have

t + δ1 = 1

2

∫
r dr√−A + Er2 − ω2r4

. (12)

The roots of the denominator are

(r1,2)
2 = 1

2ω2
(E ±

√
E2 − 4ω2A). (13)

Bounded motion r1 � r � r2 is obtained for

E2 − 4ω2A � 0 and A � 0. (14)

Performing the integration in (12) we obtain

r2 = 1

2ω2
(E +

√
E2 − 4ω2A sin[4ω(t + δ1)]). (15)

Thus, for ω > 0, r2 is indeed bounded and periodic with period T = π
2ω

for all values of α

and β as long as (14) is satisfied.
For ω = 0, the integral (12) must be evaluated differently and we obtain

r2 = A + 4E2(t + δ1)
2

E
. (16)

We see that the trajectories for ω = 0 are not bounded, independently of the values of alpha
and beta.

The limiting case A = 0 corresponds to the harmonic oscillator for which all trajectories
are bounded and periodic. In the other limiting case E2 − 4ω2A = 0, the integral (12) is not

defined. Directly from (8) we obtain ∂S1
∂r

= 0, r = 1
ω

√
E
2 , i.e. the trajectories are circles.

3
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2.3. Integration of the angular part

From (8) and (9) we obtain

∂S1

∂A
= −1

2

∫
dr

r
√−A + Er2 − ω2r4

(17)

∂S2

∂A
= 1

2

∫
sin kϕ cos kϕ dϕ√

A cos2 kϕ sin2 kϕ − αk2 sin2 kϕ − βk2 cos2 kϕ
. (18)

The integrals are readily evaluated to give

∂S1

∂A
= − 1

4
√

A
arcsin

[ −2A + Er2

r2
√

E2 − 4ω2A

]
(19)

∂S2

∂A
= − 1

4k
√

A
arcsin

[
−2A sin2 kϕ + A − (α − β)k2√

(A − αk2 + βk2)2 − 4k2βA

]
. (20)

In addition to (14) we require

(A − αk2 + βk2)2 − 4k2βA > 0 and β > 0. (21)

A more symmetric way of writing this condition is

[A − (α + β)k2]2 − 4αβk2 � 0. (22)

From the form of Hamiltonian (3) we see that the trajectories are restricted to the sectors

nπ

2k
< ϕ <

(n + 1)π

2k
, n ∈ R. (23)

The integral (18) was evaluated using the substitution z = sin2 kϕ. The denominator in
the integral vanishes for the values

z1,2 = (A − αk2 + βk2) ∓
√

(A − αk2 + βk2)2 − 4Aβk2

2A
. (24)

Condition (21) is necessary to assure z1 < z < z2 which is equivalent to (22). A final
condition is 0 � z1,2 � 1 which implies

A + k2(β − α) � 0 and α > 0. (25)

3. The bounded trajectories

3.1. Equation for trajectories for integer values of k

So far we have established that bounded trajectories for Hamiltonian (3) are obtained if the
constants of the system satisfy

A > 0, α > 0, β > 0, ω > 0, A > k2|β − α|,
[A − (α + β)k2]2 − 4αβk2 > 0, E2 − 4ω2A > 0. (26)

Now let us obtain an equation for the trajectories. From (11), (19) and (20) we have

k arcsin R + arcsin Uk = −4k
√

Aδ2, (27)

where we have introduced

R = −2A + Er2

r2
√

E2 − 4ω2A
and Uk = −2A sin2 kϕ + A − (α − β)k2√

[A − (α + β)k2]2 − 4αβk2
, (28)

4
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for r2 and z = sin2 kϕ in the intervals

1

2ω2
(E −

√
E2 − 4ω2A) � r2 � 1

2ω2
(E +

√
E2 − 4ω2A) (29)

z1 � z � z2, (30)

where z1,2 are as in (24).
We have

−1 � R � 1, −1 � Uk � 1. (31)

Once R is known as a function of ϕ we obtain r(ϕ) as

r(ϕ) =
√

2A

E − R
√

E2 − 4ω2A
.

We rewrite (27) as

k arccos R = − arccos Uk + C, (32)

with

C = (k + 1)π

2
+ 4k

√
Aδ2, 0 � C � 2π. (33)

Equation (32) can be converted into an algebraic equation for R in term of sin2 kϕ. We use the
well-known formula [10] for the Chebyshev polynomials

Tk(x) = cos(k arccos x) = (x + i
√

1 − x2)k + (x − i
√

1 − x2)k

2
(34)

for k � 1 and obtain

Tk(R) = (R + i
√

1 − R2)k + (R − i
√

1 − R2)k

2
= Uk cos C ±

√
1 − U 2

k sin C. (35)

We see that we can restrict the values of C to 0 � C � π since the interval π � C � 2π

will give the same trajectories.
Let us write (35) as a polynomial equation with real coefficients for R (and thus for r2).

We do this separately for even and odd values of k and obtain

k = 2m:

T2m =
m∑

l=0

(
2m

2l

) l∑
j=0

(−1)j
(

l

j

)
R2(m−j) = U2m cos C ±

√
1 − U 2

2m sin C, (36a)

k = 2m + 1:

T2m+1 =
m∑

l=0

(
2m + 1

2l

) l∑
j=0

(−1)j
(

l

j

)
R2(m−j)+1 = U2m+1 cos C ±

√
1 − U 2

2m+1 sin C. (36b)

The crucial point is that (35) does not contain any multivalued functions. It follows that
R(ϕ) and ultimately r(ϕ) is a periodic function with the same period τ as sin2 kϕ namely
τ = π

k
and

r(ϕ) = r
(
ϕ +

π

k

)
. (37)

Hence, all bounded trajectories are closed and the motion is periodic.

5
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We stress that τ = π
k

is the period of r as a function of ϕ. Both r and ϕ are periodic in
time t with the same period, namely T = π

2ω
(see (15)), and this period does not depend on k

and coincides with that of the harmonic oscillator.
Alternative (and equivalent) equations for the trajectories can be obtained. If we solve

(35) for Uk we obtain

Uk(ϕ) = Tk(R) cos C ±
√

1 − Tk(R)2 sin C. (38)

Since we have |Uk| � 1, we can define ηk by putting

cos(ηk ± C) = Uk (39)

and rewrite (35) as

Tk(R) = cos ηk. (40)

In section 4 we shall plot the bounded trajectories for low values of k. The equations for
the trajectories then simplify and we have

k = 1: R = U1 cos C ±
√

1 − U 2
1 sin C (41)

k = 2: 2R2 − 1 = U2 cos C ±
√

1 − U 2
2 sin C (42)

k = 3: 4R3 − 3R = U3 cos C ±
√

1 − U 2
3 sin C (43)

k = 4: 8R4 − 8R2 + 1 = U4 cos C ±
√

1 − U 2
4 sin C. (44)

The trajectories are always closed curves within the sectors (23). They can never actually
reach the boundaries of the sectors, unless we have α = 0 or β = 0 (or both). The trajectories
degenerate into line segments for U 2

k = 1 (see (35)). The length of the segment is determined
by the limits (29) and (30) which must be imposed.

3.2. Singular points on the trajectories for k integer

Let us consider a curve given in polar coordinates. Singular points on the curve are those
where the derivative dr

dϕ
is not defined. They satisfy the overdetermined system of equations:

F(r, ϕ) = 0,
∂F

∂r
= 0,

∂F

∂ϕ
= 0. (45)

In our case the equation of the curve is

Fk(r, ϕ) = Tk(R) − Uk cos C ∓
√

1 − U 2
k sin C = 0, (46)

and the derivatives satisfy

∂F2m

∂r
= ∂T2m

∂R

dR

dr

= 2
m∑

l=0

(
2m

2l

) l∑
j=0

(−1)j
(

l

j

)
(m − j)R2(m−j)−1 dR

dr
(47)

∂F2m+1

∂r
= ∂T2m+1

∂R

dR

dr

=
m∑

l=0

(
2m + 1

2l

) l∑
j=0

(−1)j
(

l

j

)[
2(m − j) + 1

]
R2(m−j) dR

dr
(48)

6
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∂Fk

∂ϕ
=

−cos C

√
1 − U 2

k ± Uk sin C√
1 − U 2

k

dUk

dϕ
. (49)

From equation (28) we see that dR
dr

vanishes only for r → ∞ and dUk

dϕ
only for ϕ = nπ

2k
,

n = 0,±1,±2, . . .. These values correspond to points that do not lie on a trajectory.
The singular points satisfy Uk = ± cos C that is

sin2 kϕ = A + k2(β − α) ±
√

(A + k2(β − α))2 − 4Aβk2 cos C

2A
, (50)

and the one of equation (49) for k even or odd respectively.
From (49) we see that ∂Fk

∂r
is a polynomial of order k − 1 and will hence have k − 1 zeros,

all of them real. These zeros are actually singular points if the corresponding values of r and
ϕ lie on the trajectories (see (46)). This in turn depends on the constants A, C and E, i.e. on
the initial conditions (for ω, α and β given). The statement thus is: the number n0 of singular
points on the trajectories satisfies

0 � n0 � k − 1. (51)

For small values of k these formulas give:
For k = 1 : ∂F1

∂r
= dR

dr
�= 0 r1 � r � r2. There are no singular points.

For k = 2 : ∂F2
∂r

= 4R dR
dr

= 0. The possible singular point corresponds to r =
√

2A
E

.

For k = 3 : ∂F3
∂r

= 3(4R2 − 1) dR
dr

= 0. The two possible singular points are R = ± 1
2 i.e.

r2 = 4A

2E±√
E2−4ω2A

.

For k = 4 : ∂F3
∂r

= 16R(2R2 − 1) dR
dr

= 0. The three possible singular points are R1 = 0

and R2,3 = ± 1√
2
, i.e. r =

√
2A
E

, r2 = 2
√

2A√
2E∓√

E2−4ω2A
.

3.3. Equation for trajectories for rational values of k = m/n

In the last subsection, we obtained the equation for the trajectories for integer values of k. We
have established that those trajectories for Hamiltonian (3) are bounded if the constants of the
system satisfy conditions (26). Now let us obtain the trajectories when k is rational.

Here we set k = m/n for m, n integers. The bounded trajectories in this case are obtained
under the same conditions on the constants of the system as those specified in the preceding
subsection (26).

Equation (32) becomes

m arccos R = −n arccos Uk + C̃. (52)

Using identity (34) we obtain

Tm(R) = Tn(Uk) cos C̃ ±
√

1 − Tn(Uk)2 sin C̃. (53)

Following the same arguments as in subsection 3.1, we see that R(ϕ) and r(ϕ) are periodic
functions of the angle ϕ of period τ = π

k
= nπ

m
. Again all bounded trajectories are closed and

the motion is periodic.
In section 5 we will present the trajectories for the rational values k = 1/2, 1/3, 3/2.

3.4. Comments on the range of the parameters

The trajectories given by (35) or (36b) (see also (41)–(44)) and (53) depend on three quantities
E, A and C. E and A are the values of the energy Hk (3) and the integral of motion Xk (7),

7
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respectively. The third integral Yk, responsible for superintegrability has so far not figured
explicitly and is related to the constant C. The quantities A and E are restricted by relations
(26) in order for the trajectories to be bounded. We allow C to take values 0 � C � π . The
trajectories could also be calculated differently, using all three integrals of motion and just one
of the Newton equations of motion. This may impose further conditions on the parameters
involved. We discuss this in detail for k = 1 in section 4.

4. The special case k = 1

The bounded trajectories for k = 1 are given by (41) with R(r) and U1(ϕ) defined in (28).
The case k = 1 differs from that of all other values of k by the fact that the additional integral
of motion Yk for k = 1 is second order in the momenta and hence also leads to the separation
of variables in the Hamilton–Jacobi equation. Explicitly we have [2, 3]

Y1 = E1 = P 2
1 + ω2x2 +

α

x2
, (54)

so Y1 is the energy related to motion in the x direction (equally well we could have put
Y1 = E2 = E − E1 or Y1 = E1 − E2 where E2 is the energy related to motion in the y
direction). The Hamilton–Jacobi equation in this case is multiseparable. Namely it separates
in polar coordinates (for any k) and Cartesian ones (for k = 1). For k = 1, it also separates in
elliptic coordinates with an arbitrary focal distance of 0 < f < ∞.

The equations of motion were solved in Cartesian coordinates [2, 3] and the solutions
corresponding to bounded trajectories in the notations of the present paper are

x2 = E1

2ω2
+

1

2ω2

√
E2

1 − 4αω2 sin[4ω(t + C1)] (55)

y2 = E2

2ω2
+

1

2ω2

√
E2

2 − 4βω2 sin[4ω(t + C2)]. (56)

Above we have E1 + E2 = E and C1, C2 are the integration constants. From (55) and (56) we
see that the trajectories are periodic. They lie inside a rectangle

E1 −
√

E1 − 4αω2

2ω2
� x2 � E1 +

√
E1 − 4αω2

2ω2
(57)

E2 −
√

E2 − 4βω2

2ω2
� y2 � E2 +

√
E2 − 4βω2

2ω2
. (58)

We see that we must have

2ω
√

α � E1 � E − 2ω
√

β. (59)

Eliminating t from (55) and (56), we obtain an equation for the trajectories, namely

y2 = E2

2ω2
+

√
E2

2 − 4βω2

2ω2
√

E2
1 − 4αω2

[cos S(−E1 + 2ω2x2) (60)

± 2ω sin S
√

−α + E1x2 − ω2x4] (61)

for 0 � S = C1 − C2 � π .
This equation is equivalent to a fourth-order polynomial equation involving the coordinates

x and y. Viewing x as a parameter for the curve, we note that it must satisfy (57). The curve

8
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(60) has four branches, each lying entirely within one quadrant of the (x, y) plane. For α > 0
and β > 0, it can never reach the coordinate axes (see (57) and (58)).

In the limiting cases when sin S = 0, the closed curve (60) collapses into a segment of a
quadric. For S = 0, this is a segment of a hyperbola and for S = π, a segment of an ellipse
(always inside the rectangle (57) and (58)).

The trajectory (41) in polar coordinates can be made more explicit, namely

r2 = 2A

E − √
E2 − 4ω2A(U cos C ± √

1 − U 2 sin C)
. (62)

Again this corresponds to a fourth-order polynomial curve (in r and sin ϕ) that degenerates
into a segment of a quadric for sin C = 0. Considering z = sin2 ϕ as a parameter of the curve
we must restrict to the interval (30).

The trajectories given by (60) and (62) must coincide. This gives a relationship between
the ‘Cartesian constants’ {E1, E, S} and the ‘polar constants’ {A,E,C}. We calculate r(t)

and ϕ(t) from (55) and (56) and compare with r(t) from (15) and ϕ(t) from (41). For given
total energy E (and α, β, ω), we obtain

A =
E1E2 + 2(α + β)ω2 −

√(
E2

1 − 4αω2
)(

E2
2 − 4βω2

)
cos S

2ω2
, (63)

and

cos C = A(2E1 − E) − E(α − β)√
(A2 + (α − β)2 − 2A(α + β))(E2 − 4ω2A)

. (64)

The condition |cos C| � 1 is not necessarily automatically satisfied by the right-hand side
of (64) and imposes further conditions. First of all, the denominator in (64) must be the square
root of a positive number which implies

A � (
√

α +
√

β)2. (65)

Secondly, the equation cos2 C = 1 is a quadratic polynomial in A and E1:

ω2A2 + A(E2
1 − E1E − 2(α + β)ω2) + E2α + E1E(−α + β) + (α − β)2ω2 = 0. (66)

An example of the corresponding curve in the (E1, A) plane is given in figure 1. We have
chosen E = 20, ω = 2, α = 3 and β = 2. The curve cos2 C = 1 lies inside the rectangle

2ω
√

α � E1 � E − 2α
√

ω, (
√

α +
√

β)2 � A � E

4ω2
.

We have 0 < cos C < 1 in region I, −1 < cos C < 0 in II, cos C < −1 in III and IV, and
cos C > 1 in V and VI.

The dashed curve represents cos C = 0. At the intersection points of this curve and (66),
we have cos C = 0/0, i.e. cos C is undefined.

5. Examples of trajectories

In this section we present curves showing trajectories for specific choices of parameters ω, α

and β and the integrals of motion E, A and C. We choose k = 1, 2, 3, 4, 1/2, 1/3, 3/2.
From all of the figures we see that the trajectories do indeed lie within the sectors (23)

and never reach the sector boundaries. From formulas in sections 2 and 3 and from the figures
we see that we can actually restrict to one sector only, e.g. the one with n = 0 in (23). The
trajectories in all other sectors are obtained by reflections in the sector boundaries.
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Figure 1. Regions of bounded trajectories in the (E1, A) plane (I and II).

(a) C = π (b) C = 95π
100 (c) C = π

2

(d) C = π
20 (e) C = 0 (f ) Trajectories in the four

sectors of the (x, y) plane
for C = π

2 .

Figure 2. Examples of trajectories for k = 1.

The figures illustrate all features discussed in the previous sections. For k = 1, the
trajectories have no singular points. The dependence on the constant C is quite spectacular.
For all values of C the trajectories are fourth order curves. For C = π

2 , they resemble ellipses.
For C = 0 or C = π , the trajectories flatten out and finally degenerate into line segments (see
figure 2). This happens for all values of k. For k = 2, (42) has two real roots. For each of
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(a) Trajectories for the first root (b) Trajectories for the second root

Figure 3. Examples of trajectories for k = 2.

Figure 4. Trajectories for the real root for k = 3.

them we present the trajectories in all eight sectors for just one value of C (see figure 3). We
see that the chosen trajectories have one singular point. For k = 3, (43) has three roots but
only one is real. A typical set of trajectories is on figure 4. For k = 4, (44) has four real roots.
We choose just one of them and present the trajectories in the first quadrant of the (x, y) plane
(see figure 5).

Trajectories for rational values of k, namely k = 1/2, 1/3, 3/2 are given in figures 6–8,
respectively. They somewhat resemble Lissajous curves for an anisotropic oscillator. The
symmetry with respect to reflection in the boundaries is obvious in figures 2(f ) to 5.

11



J. Phys. A: Math. Theor. 43 (2010) 015202 F Tremblay et al

Figure 5. Trajectories for the first real root in the first quadrant for k = 4.

Figure 6. Trajectories for k = 1/2.

For k = 1, we set E = 20, A = 12, ω = 2, α = 3 and β = 2. The trajectories are given
on figure 2.

For k = 2, we set E = 50, A = 60, ω = 2, α = 3 and β = 2. The trajectories in the
eight sectors for C = π

2 are shown in figure 3.
For k = 3, we set E = 50, A = 100, ω = 2, α = 3 and β = 2, and for k = 4, E = 16,

A = 15, ω = 2, α = 1
4 and β = 1

8 . The trajectories are shown in figures 4 and 5.
For k = 1/2 and 1/3, we set E = 20, A = 24, ω = 2, α = 3 and β = 2 in (53). For

C = π
2 , the trajectories are given in figures 6 and 7. There are no singular points.

For k = 3/2, we set E = 15, A = 10, ω = 2, α = 1/4 and β = 1/8 in (53). We
obtain three roots for r2. Two of them are complex conjugate to each other. The trajectories
corresponding to the real root for C = π

2 are shown in figure 8. We observe two singular
points.
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Figure 7. Trajectories for k = 1/3.

Figure 8. Trajectories for k = 3/2.

6. Conclusion

The present paper, together with our previous one [1], provides a very strong indication that
Hamiltonian (3) is superintegrable for all integer values of k in classical and in quantum
mechanics. In classical mechanics, the results of section 3.3 show that this is also true for
rational values of k. Indeed, we have shown in [1] that the system (1) is exactly solvable for
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all values of k thus supporting a previous conjecture [11] that all superintegrable systems are
exactly solvable. A spectacular result is that the period T = π

2ω
is not only independent of k

but is the same as for the harmonic oscillator.
We mention that Hamiltonian (3) can be interpreted as representing a three-body system

on a line, once the motion of the center of mass is factored out. The same classical system was
studied in [12] for ω = 0 and α = 0. In this case the trajectories are never bounded (see (26))
and the motion cannot be periodic. A third integral of motion can still exist and the authors
suggest a possible form of the additional integral for k odd [12].

A rigorous proof of superintegrability requires the explicit construction of the third integral
of motion for all integer and rational values of k and possibly even for any k > 0, k ∈ R. This
is left for a future study.
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